Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process.
نویسندگان
چکیده
CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-forming toxins of diverse organisms. To elucidate the pore formation mechanism of CEL-III, the crystal structure of the CEL-III oligomer was determined. The CEL-III oligomer has a heptameric structure with a long β-barrel as a transmembrane pore. This β-barrel is composed of 14 β-strands resulting from a large structural transition of α-helices accommodated in the interface between domains 1 and 2 and domain 3 in the monomeric structure, suggesting that the dissociation of these α-helices triggered their structural transition into a β-barrel. After heptamerization, domains 1 and 2 form a flat ring, in which all carbohydrate-binding sites remain bound to cell surface carbohydrate chains, stabilizing the transmembrane β-barrel in a position perpendicular to the plane of the lipid bilayer.
منابع مشابه
Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.
CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in...
متن کاملSpontaneous oligomerization of a staphylococcal α-hemolysin conformationally constrained by removal of residues that form the transmembrane β-barrel
3To whom correspondence should be addressed Staphylococcal α-hemolysin is a water soluble, monomeric, bacterial exotoxin, which forms heptameric pores in membranes. The rate determining step in assembly is the conversion of a heptameric prepore to the fully assembled pore in which the central glycine-rich domain of each subunit inserts into the membrane to form a 14 strand β barrel. Barrel form...
متن کاملConformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin
Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structu...
متن کاملDisulfide-Bond Scanning Reveals Assembly State and β-Strand Tilt Angle of PFO β-Barrel
Perfringolysin O (PFO), a bacterial cholesterol-dependent cytolysin, binds a mammalian cell membrane, oligomerizes into a circular prepore complex (PPC) and forms a 250-Å transmembrane β-barrel pore in the cell membrane. Each PFO monomer has two sets of three short α-helices that unfold and ultimately refold into two transmembrane β-hairpin (TMH) components of the membrane-embedded β-barrel. In...
متن کاملChemical modification of the hemolytic lectin CEL-III by succinic anhydride: involvement of amino groups in the oligomerization process.
CEL-III is a Ca(2+)-dependent lectin from a marine invertebrate, Cucumaria echinata, which shows strong hemolytic activity toward human and rabbit erythrocytes. After binding to carbohydrate receptors, CEL-III oligomerizes in the erythrocyte membrane to form ion-permeable pores, leading to the colloid osmotic rupture of the cells. Since hemolysis was greatly increased in the alkaline pH, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 289 18 شماره
صفحات -
تاریخ انتشار 2014